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Abstract-It is shown that a minimum complementary energy analysis, in conjunction with Saint
Venant type stress assumptions, for shear-deformable plates of variable thickness leads to a second
order ordinary differential equation problem for the distribution of transverse shear. It is found
that this equation is equi-dimensional for plates with linearly varying thickness. The ensuing exact
solution implies an explicit expression for the location of the center of shear dependent on an
appropriate dimensionless parameter involving cross-sectional dimensions and transverse twisting
and shearing stiffness coefficients. Significant numerical consequences are encountered for plates
which are relatively soft in transverse shear.

INTRODUCTION

Recent results for the shear center problem in the framework of Kirchhoff plate theory
have left open the extent to which the effect of transverse shear-deformability becomes
significant with increasing thickness-width ratio and with decreasing transverse shearing
stiffness. In the following this problem is considered for an orthotropic plate, using the
principle of minimum complementary energy in conjunction with Saint Venant type stress
assumptions. In an earlier application of this approach to non-shear-deformable plates
(Reissner, 1991), the numerical consequences were found to be quite close to corresponding
results obtained by a more accurate and more complex analysis in which account was taken
of anti-clastic curvature constraints by Reissner (1989) and Gu and Wan (1993). There is
no reason to suppose that the same would not be true when transverse shear-deformability
is taken into account.

The present approximate analysis reduces the problem to an ordinary second order
differential equation. It is found that this equation can be solved explicitly for plates with
linear widthwise-thickness variation, with a resultant closed-form expression for the shear
center coordinate in terms of an appropriate dimensionless parameter.

FORMULATION

Consider a rectangular cantilever plate of span L and width a, with edges at y = 0, a
and x = 0, L. The edge x = °is clamped and the edges y = 0, a are traction free. The edge
x = L is stipulated to deflect uniformly by an amount W, in conjunction with two conditions
of absent bending moments and edgewise rotational displacements.

The minimum complementary energy formulation for a shear-deformable plate is, for
this problem, given in terms of stress couples M n MY' M[ and stress resultants Qx- Qy by the
variational equation

c5[f f: V(M", MY' M n Q" Qv) dxdy- W f: (Qx)L dyl= 0. (I)

The complementary energy density V is for a linearly elastic orthotropic plate, to which
attention is restricted in what follows, of the form
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where
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(2)

D y = D x (3)

for an isotropic homogeneous plate of thickness h = hey).
Equation (I) is associated with constraint differential equations

and with constraint boundary conditions, which in this case are

y = O,a; Qr = My = M, = 0; M,(L,y) = O.

(4)

(5)

Equations (1) and (5) will be used in conjunction with the Saint Venant type assump
tions

for an approximate determination of a force Q and a torque T,

(6)

ra

Q = Jo Q,dy,

and a shear center coordinate

T= r(Qxy-MI)dy (7)

Ys = T/Q. (8)

REDUCTION

The three relations in eqn (4), in conjunction with eqns (5) and (6), give the following
as expressions for Q" M" and M x :

Qx = QxCy), M I = M,(y), M, = (Q,-M;)(x-L) (9)

with the prime indicating differentiation with respect to y.
The introduction of eqns (6) and (9) into eqns (2) and (I) leads to the one-dimensional

variational equation

with constraint boundary conditions

MJO) = MI(a) = 0

and with Db = (I-D;/D,DJ D,.
The Euler differential equations of (10) are

(10)

(11 )
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(
Q,-M;)' M.t+--=0.

3Dh UD
t

(12)

While it would be possible to reduce eqn (12) to one second order equation for M
"

it
is preferable to proceed as follows. Introduction of Q, ~M; from the first relation in (12)
into the second gives the following as an expression for M t in terms of Q,:

(13)

With eqn (13) the first relation in eqn (12), together with eqn (II), leaves the boundary
value problem

(14)

(15)

It is allowable, for simplicity's sake, to set 3WI L J = 1. Furthermore, except for terms
of relative order h2!L2

, eqn (14) may be replaced by

(14')

With this and upon observation of eqns (15) and (13), the expressions for Q and T become

f
(l fa

T = Dbydy-2 Dt(B\Q,)' dy.
o 0

(16)

Upon setting B, = 0, the non-shear-deformational plate theory result

f
a If(I

V.= Dvdv! Ddv~' ~ h. ~ / h 0/

o I 0

becomes an immediate consequence.

A CLOSED-FORM SOLUTION

It is possible to obtain an explicit solution in closed form for plates for which

(17)

In view of eqn (3), this includes the case of a homogenous orthotropic plate of linearily
varying thickness h = hoyt.

Upon setting

Q, = Dl>Of(I1), <: = J D,oB\o!a,

eqns (14) and (15) assume the equi-dimensional form

with dots indicating differentiation with respect to Yf.

( 18)

(19)
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An inspection reveals that the differential equation in (19) is explicitly solvable in terms
of suitable powers of YJ. Upon satisfaction of the two boundary conditions the solution
comes out to be

and

.= _I_ ( 3 _ 2YJP) =~
j 1- 8[.2 YJ P - 1 ' P 8

4 p+l

DtCB,Q,)' = D ho [.2 11 3 (YJ - If)" = Db0 282 YJ 1=;82

(20)

(21)

The introduction of eqns (17) and (21) into eqn (16) gives, after some transformations,

(22)

and therewith, in accordance with eqn (8),

(23)

An impression of the significance of the effect of transverse shear deformation may be
gained by considering a homogenous orthotropic plate for which

Gh~
D to =-6-' (24)

with G = Gt = E/2( 1+ v) for the case of isotropy. As 8 increases, the value ofys/a decreases,
at first approaching the cross-sectional centroid value Ye/a = 2/3 from above. For sufficiently
large 8 values, ys!a becomes smaller than ycia. For example, when 8 = 1 then ys/a = 0.59.
In this connection it is worth noting that for a "plate", for which the cross-section is an

equilateral triangle with ho/a = 2/ J3 and for which a plate theoretical analysis is clearly
not rational, eqn (23) gives yJa = 0.647 when G/G[ = 1 and [.2 = 4/15, in place of the correct
value ys!a = 2/3.

It seems reasonable to limit the applicability of eqn (23) by the stipulation that
ho/a ~ 1/2. This does not preclude the possibility of significant numerical effects, for
sufficiently large values of GIG,.
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